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Diode-pumped Nd:BaY2F8 picosecond laser
mode-locked with carbon nanotube
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Picosecond pulse generation near 1-�m wavelength has been achieved with a Nd:BaY2F8 (Nd:BaYF) laser
mode-locked using a single-walled carbon nanotube saturable absorber (SWCNT-SA). The laser was operated
at its main 1049-nm transition, generating 8.5-ps pulses with �70-mW output power for �570-mW absorbed
pump power. This is the first demonstration of cw mode-locking in the picosecond regime with Nd-doped crys-
tals and SWCNT-SAs. The requirements on the SWCNT-SA for successful mode-locking in relatively narrow-
band neodymium lasers are reviewed and their implications are discussed.
© 2010 Optical Society of America
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. INTRODUCTION
WCNT-SAs have been successfully employed in a variety
f solid-state and fiber lasers for generation of ultrashort
ulses with passive mode-locking in a broad range of
avelengths extending from 1 to 2 �m [1,2]. This new

lass of saturable absorber (SA) devices has attracted
reat interest owing to the much easier and cost-effective
abrication process with respect to the well-established
emiconductor saturable absorber mirror (SESAM) tech-
ology. Indeed, preparing a SWCNT-SA for a specific laser
ransition requires only choosing the SWCNT with the
uitable diameter and chirality among those readily
vailable commercially. For mode-locking of solid-state la-
ers, SWCNTs are usually deposited on glass substrates
r dielectric mirrors (SWCNT-SAMs) as SWCNT/polymer
ispersions.
To date, ultrafast solid-state lasers mode-locked with

WCNT-SAs operating in the femtosecond regime have
een demonstrated in wide-bandwidth laser systems such
s Nd:glasses [3]; Yb:KYW [4] and Yb:KLuW [5];
r/Yb:glass [3]; Cr4+: forsterite [6]; and Cr4+:YAG [7].
ome of these reports also demonstrated chirped picosec-
nd pulse generation in resonators without additional dis-
ersion compensation.
Apparently, lasers based on Nd3+-doped crystals have

ot been investigated for cw mode-locking with SWCNT-
As: the only report we are aware of is of a flashlamp-
umped Q-switched mode-locked 1.34-�m Nd:GdVO4
aser [8].

Employing the SWCNT-SA devices previously used for
ode-locking Yb:KYW [4] and Yb:KLuW lasers [5] we de-
0740-3224/10/122739-4/$15.00 © 2
ided to investigate their performance with several active
aterials, specifically cw diode-pumped Nd:glass:
d:BaY2F8 (Nd:BaYF), Nd:YAG, and Nd:YVO4.
Our choice of Nd:glass was motivated by the fact that it

ad already been successfully mode-locked in the femto-
econd regime (we readily achieved results comparable to
r better than those of [3]), while lasers with Nd3+-doped
rystals might be more difficult to mode-lock because of
he larger emission cross section and the narrower fluo-
escence bandwidth. Indeed among these crystals, we
ere able to achieve cw mode-locking only using
d:BaYF, whose spectroscopic features are intermediate
etween those of Nd:glass and of Nd:YAG and Nd:YVO4.
or comparison, Table 1 summarizes the main properties
f neodymium materials investigated in this research. Ac-
ording to the generally accepted condition for mode-
ocking starting [9,10] in large emission-cross-section and
arrow-bandwidth laser materials, both gain saturation
nd the fluctuation pulse duration of the free-running
eld contribute to make mode-locking more difficult.
herefore, SWCNT-SAs with larger modulation depth
nd smaller non-saturable loss should be employed in this
ase.

. EXPERIMENTS
he laser cavity was an astigmatically compensated
-folded resonator shown in Fig. 1. The pump diode was a
00�1 �m2 broad-area emitter with a maximum output
ower of 1 W at 805 nm. It was collimated by an 8-mm
ocal aspheric lens L1, expanded by a factor of 15 in the
010 Optical Society of America
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low-axis direction with a cylindrical lens telescope (C1,
2), and eventually focused in the laser crystal by a
5-mm focal achromat L2. The pump spot size measured
ith a CCD camera was �62 �m�28 �m along the

horizontal) slow- and fast-axis, respectively. The M2 pa-
ameters for both axes were 19 and 1.5, respectively.

The 4-mm long, 1.8%-doped Nd:BaYF crystal is the
ame used in our previous experiments with SESAM
ode-locking [11,12]. The Nd:BaYF crystal was Brewster-

ut with parallel end-faces for propagation along the z
xis with polarization parallel to the y-axis (which is both
n optical and crystallographic axis).
The laser crystal did not require any active cooling for

he present low-power diode-pumping.
The waist radius of the X-shaped cavity was measured

o be 40 �m�30 �m. The distances between cavity mir-
ors were: M1-M2=115 mm, M2-M3=265 mm, and
1-OC=380 mm. An output coupler (OC) with power

ransmissivity 0.8% was chosen, achieving up to 150 mW
ith 26% slope efficiency in cw operation.
For mode-locking experiments, the flat HR-mirror M3

as replaced by a flat SWCNT-SA mirror (SWCNT-SAM)
ith measured saturable loss of 0.21%, non-saturable loss
f �0.7%, Fa�5 �J/cm2 saturation fluence, and with
iexponential fast ��150 fs� and slow ��1 ps� relaxation
imes. Detailed descriptions of the characterization tech-
iques employed for the SWCNT-SAM are given in [4].
Q-switching mode-locking was readily observed, while

w mode-locking was achieved within a range of M1-M2
eparation �115–118 mm. This corresponds to a mode
adius on the SWCNT-SAM of �150–165 �m. Indeed,

Table 1. Emission Cross Sections and Gain
Bandwidths of Neodymium-Doped Materials

Discussed Here

Nd:glass
(phosphate

Schott
LG760)

Nd:BaYF
(E//b) Nd:YAG

Nd:YVO4
(E//c)

Emission
cross section
��1020 cm2�

4.5 8 33 160

luorescence
bandwidth
WHM [nm]

24.3 2.8 0.6 0.8

ig. 1. (Color online) Resonator layout. PD, pump laser diode;
1, aspheric lens; L2, achromat lens; C1, C2, cylindrical lenses

15� telescope); M1, M2, concave mirrors, 100-mm curvature,
igh-reflectivity (HR) at 1050 nm, high-transmissivity at
00–810 nm; M3, either flat mirror, HR at 1050 nm, or
WCNT-SAM (HR mirror with SA film coating); OC, output cou-
ler mirror, 30 wedge.
�
arger spot sizes resulted in Q-switched mode-locking,
hile smaller ones could produce local damage on the
WCNT film on SWCNT-SAM, depending on the position
f the beam incidence.

The mode-locked Nd:BaYF laser operated at the main
ransition near 1049 nm, yielding �8.5-ps pulses at
94 MHz and 70-mW output power. The threshold for cw
ode-locking was very close to the maximum output

ower available with the present setup. Though the laser
as not self-starting, the stable cw mode-locking regime

ould easily be initiated by gently tapping one cavity mir-
or.

Figure 2 shows the autocorrelation trace and Fig. 3 the
F spectrum showing no Q-switching instabilities. The
ulses were measured to be reasonably Fourier-limited
ith a time-bandwidth ������0.58.
The same resonator was used to assess the ability of

he SWCNT-SAM to achieve cw mode-locking with the
ther Nd3+-doped gain media. Nd:glass readily allowed cw
ode-locking with femtosecond pulses or even chirped pi-

osecond pulses in the positive dispersion regime (these
esults will be reported elsewhere [13]). Instead, neither
d:YAG nor Nd:YVO4 crystals evidenced the slightest

endency to mode-locking or at least Q-switching mode-
ocking.
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. DISCUSSION
hese observations suggest that, given the characteristics
f the SWCNT-SAM available, mode-locking was severely
indered in the case of Nd:YAG and Nd:YVO4, while
d:BaYF was barely suitable for cw mode-locking.
This increasing difficulty to evolve free-running spon-

aneous fluctuations into either cw mode-locking or even
-switching mode-locking when choosing gain media with

arger emission cross section and smaller gain bandwidth
an be explained as follows.

Besides considering the self-starting mode-locking re-
uirements, a necessary condition ensuring the existence
f a positive gain window for field fluctuations was dis-
ussed in [9,10]. Random noise fluctuations of the instan-
aneous power P�t� have durations �p�TR /m, TR being
he round-trip time (�5 ns in our experiments) and m the
umber of longitudinal modes related to the gain band-
idth of neodymium lasers. For Nd:glass m is �102 [10],
nd even smaller in Nd:YAG and Nd:YVO4, owing to a
20-times reduction of the fluorescence bandwidth.
herefore, in our experiments �p is �50 ps and the
WCNT-SAM behaves as a fast absorber during the early
tages of the mode-locking process:

q�t� �
q0

1 +
P�t�

AaIa

, �1�

here q�t� is the loss at time t, q0 the saturable loss, Aa
he mode area, and Ia=Fa /�a the saturation intensity, and
here �a is the saturable absorber relaxation time. Since

p��a we may consider the slower relaxation time compo-
ent �a�1 ps. The instantaneous loss change due to the
ransit of the low-energy fluctuation in the SA is then

�q�t� � − q0

P�t�

AaIa
. �2�

Therefore, a positive gain window for the fluctuation
xists, provided that the net gain averaged over P�t� is
0; that is,

��g − �q�P�t� =

�
−	

+	

��g�t� − �q�t��P�t�dt

�
−	

+	

P�t�dt

� 0, �3�

here

�g�t� � − gcw

�
−	

t

P�s�ds

AgFg
�4�

s the variation of gain due to saturation during the tran-
it of the perturbation P�t�, gcw is the saturated gain of
he laser, and Ag and Fg are the mode area and saturation
uence of the gain medium, respectively. The condition
or successful mode-locking initiation is therefore
q0 �
FaAa

FgAg

gcw

�a 	
1

2
�−	

+	

dtP�t��2

�
−	

+	

dtP2�t� � �
FaAa

FgAg
gcw

�p

�a
, �5�

here �p can be assumed as the FWHM of the fluctuation
�t�.
Considering the parameters of Nd:glass in Table 1 and

ur experimental setup, Eq. (5) yields q0�2�10−5, which
s easily fulfilled, while for Nd:YAG a much higher modu-
ation depth is required, q0�0.1%, comparable to that of
WCNT-SAMs usually employed for low-gain solid-state

emtosecond lasers and used in our experiments. The
ituation is slightly better for Nd:BaYF and still worse for
d:YVO4 as suggested by cross section values and gain
andwidths summarized in Table 1.
The condition on the critical output power Pc required

or stable cw mode-locking is readily fulfilled for the Nd-
BaYF laser owing to the small value of Fa for the
WCNT-SAM [14],

Pc =
Toc

TR


FaAaFgAgq0, �6�

ielding Pc=41 mW, considering the parameters of our
xperimental setup.

At first sight, tighter focussing in the SA might improve
he mode-locking tendency. However, the drawback is the
amage threshold of the SWCNT polymer film, which can
afely handle average intracavity power only up to
10 kW/cm2 [3,4].
One possibility to enable successful mode-locking with

his kind of SWCNT-SAs and Nd3+-doped crystals consists
f reduction of non-saturable losses and increase of modu-
ation depth q0, maintaining the same gcw. The situation
s somehow relaxed for SESAMs, since the slow compo-
ent �a is often much longer ��10 ps�, and the average
ower limit is much higher (at least an order of magni-
ude better), according to our direct experience.

It is worth mentioning that the relatively low damage
hreshold of the particular sample used in our experi-
ents seems related to strong bundling [2] of nanotubes,

s well as to the polymer concentration. Preliminary satu-
able absorption investigations on the latest series of
WCNT films with lower polymer concentration show a
amage threshold significantly improved. For example,
hough working at a longer wavelength of 1.2 �m, Cr:for-
terite lasers withstanding average intensity of
80 kW/cm2 have been demonstrated [7].
Higher modulation depth of the SA would also yield

horter pulses [15], with performance closer to the 2.6-ps
ulsewidth recently achieved with SESAMs in the Nd-

BaYF laser [12].

. CONCLUSIONS
e have demonstrated, for the first time to our knowl-

dge, cw mode-locking in a diode-pumped picosecond laser
ased on a Nd3+-doped crystal and a SWCNT-SAM. The
d:BaYF laser generated �8.5-ps pulses and 70 mW at

ow pump power �1 W. With the same setup we also in-
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estigated Nd:YAG and Nd:YVO4 crystals, which did not
xhibit any mode-locking tendency. We suggest that this
s a consequence of the strong gain saturation occurring
n the early stages of pulse evolution, preventing the cre-
tion of a positive gain window given the small modula-
ion depth of the SWCNT-SAM employed. Our study fur-
her suggests that a higher ratio between saturable and
on-saturable losses is required to successfully mode-lock
arrow bandwidth, high-gain neodymium lasers.
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