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We present a detailed analysis of the mode-locker consisting of a nonlinear crystal and a dichroic mirror,
introduced by Stankov and known as the frequency-doubling nonlinear mirror (FDNLM). Our aim is to
determine optimal values for two physical parameters: the conversion efficiency η0 of the nonlinear crystal,
and the reflection coefficient Rω of the output mirror. The optimization is based on a set of three figures of
merit: the reflected intensity, the pulse shortening ratio and the Gaussian shape factor, which are combined to
yield a final decision factor. Experimental investigations of η0 and Rω carried out using a FDNLM mode-locked
Nd:YAG laser show good agreement with the theoretical predictions. In addition, a comparative study with
other available experimental results is presented. This work demonstrates the capacity of this method to
evaluate the best performance of this mode-locking not only for the steady-state pulse domain but also in the
transient one.
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1. Introduction

Over the last decades the mode-locking principle has widely
opened the road for generating ultra short laser pulses in both the
picosecond and femtosecond time scales. Indeed all-solid-statemode-
locking techniques such as additive-pulse mode-locking (APM),
semiconductor saturable asbsorber mirror (SESAM), soliton mode-
locking, saturable Bragg reflector (SBR), and Kerr lens mode-locking
(KLM) have attracted more consideration than other techniques
based on organic dyes, because of their shot-to-shot and day-to-day
stabilities, very fast responses, and self-starting ability [1,2].

The frequency-doubling nonlinear mirror (FDNLM) mode-locker,
originally proposed by Stankov consists of a nonlinear crystal coupled
to a dichroic mirror. Its additional advantages over the aforemen-
tioned techniques are the following: it can provide passive negative as
well as positive mode-locking and it can be applied over a wide
spectral range from infrared to visible where many nonlinear crystals
are available [3–7].

The performances of the FDNLM to generate mode-locked laser
pulses have been demonstrated in many works, not only for
continuous pulse-train lasers (CPT), (usually abbreviated by cw, not
to be confused with continuous-wave lasers) but also for pulsed
pulse-train lasers (PPT) [3,4,8–10]. The latter case generally corre-
sponds to flashlamp-pumped lasers that usually generate more
energetic pulses than CPT ones. Recently optical pulses as short as
12 ps with a good shot-to-shot stability have been generated from a
flashlamp-pumped Nd:YAG laser. This laser setup combines on the
one side, active mode-locking by using an acousto-optic mode-locker
(AOML) and on the other side both passive-positive and -negative
mode-locking by using a FDNLM and a two-photon absorber (TPA)
respectively [11,12]. That configuration has been successfully inte-
grated into a sum-frequency generation spectrometer in order to
probe molecular monolayers deposited on metallic surfaces [11,13].

Alongside the running experiments, the pulse shortening mech-
anism of the FDNLM has been described by Stankov by means of a
simple theoretical model where the device reflection is represented
by an intensity-dependent nonlinear reflection coefficient [14]. Later
an analytical solution has been derived by Barr for the steady-state
condition in the case of pulse propagation inside a laser cavity
containing both an AOML and a FDNLM [15]. Note that the previous
condition can be reached after a large number of pulse round trips
inside the laser cavity which is appropriate to describe the function of
FDNLM for continuous pulse-train lasers mode-locking. More com-
plicated numerical models based on coupled wave equations for each
oscillating mode have been developed in many works to describe the
transient behavior of the optical pulse inside a laser oscillator actively
and passively mode-locked by an AOML and by a FDNLM respectively,
which turns to be convenient to simulate the mode-locking process in
flashlamp-pumped lasers [16–23].

However, as one may notice, simulating oscillators that are
actively as well as passively mode-locked with both passive-positive
and -negative mode-locking using a FDNLM and TPA components
respectively, becomes a cumbersome task especially for the determi-
nation of the physical parameters involved. In our opinion, this
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difficulty accounts for the fact that rather than focusing on post-model
analysis, all the aforementioned works investigate complicated
analytical or numerical models, often limited to the pulse shortening
ratio (PSR) and to the reflected intensity (Ir) (called the reflected
pulse power in Ref. [20]) as the figures of merit of the FDLNM
performances. In Ref. [21], the variations of nonlinear reflectivity,
reflected energy and pulse lengthening ratio, are used with a new
parameter called “steadiness” to describe the effect of the single-pass
group delay in the crystal. Furthermore, in Ref. [22], the FDNLM
nonlinear reflectivity is used with an additional parameter named
“phase mismatch”. Note that steadiness and phase mismatch could
become important parameters and introduce additional complexity
when the nonlinear crystal is relatively long as it is the case in Refs.
[21] and [22] where LBO and LiIO3 crystals of 15 and 30 mm were
used. In our experiments relatively thin crystals in the range of 2 to
4 mm were used in order to avoid complexities and to select only
two basic parameters, i.e. the dichroic mirror reflectivity Rω and the
second harmonic peak-power conversion efficiency η0 as will be
shown in the forthcoming sections.

In this work we present an extension of the Stankov model by
defining a set of three functions of the two principal parameters of the
FDNLM: the peak-power conversion efficiency η0 of the nonlinear
crystal, and the reflection coefficient Rω of the mirror. These three
running factors or figures of merit are: the reflected intensity (Ir), the
pulse shortening ratio (PSR) and the Gaussian shape factor (GSF). The
final decision factor that results from a weighted product of the three
figures of merit yields best values for η0 and Rω and thus provides
optimal performances of the FDNLM, as well as better understanding of
the device functioning. In order to verify our predictions, experimental
measurementshavebeen carriedoutwithaflashlamp-pumpedNd:YAG
laser actively and passively mode-locked by using an AOML and a
FDNLM combined with a TPA.

2. Theoretical investigation

2.1. The frequency-doubling nonlinear mirror (FDNLM)

The general configuration of a FDNLM is depicted in Fig. 1, in which
a second harmonic generation (SHG) crystal is coupled to a dichroic
mirror with a proper separation between them. In the first stage the
fundamental wavelength (FW) pulse Ii passes through the SHG crystal
(optimized for type I interaction) generating a pulse at the second
harmonic (SH) with intensity proportional to the conversion
efficiency of the crystal, η. At this stage special attention should be
paid to the polarizations of interacting waves and to the crystal cut in
order to maximize the second harmonic as shown on Fig. 1. The two
pulses are then re-injected inside the crystal after being selectively
reflected by the dichroic mirror that has reflection coefficient Rω for
the fundamental wavelength and R2ω (≈1) for the second harmonic.

In the second stage, a down-conversion process takes place when
the phase difference between the fundamental and the second
z
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1064 nm
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Fig. 1. Schematic view of the two passes into the frequency-d
harmonic, accumulated during propagation in air, reaches an odd
multiple of π. The two passes through the crystal make this device
similar to a mirror with an intensity-dependent reflection coefficient
RNL. In passive-positive action, the FDNLM reflects the high intensity
part of the incident pulse more than the lower one, which leads to
shortening the reflected pulse. The instantaneous reflection coeffi-
cient RNL has been formulated by Stankov with respect to a
normalized incident pulse intensity Ii as follows: [14]
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where the two functions η(t) and B(t) represent the instantaneous
second harmonic power conversion efficiency in the nonlinear crystal
and the fraction of the total intensity (FW+SH) reflected by the
dichroicmirror, respectively. FromEq. (1) onefinds thatRNL is a function
of time t andof the twoprincipal parameters of the FDNLM,Rω andη0.η0

is the power conversion efficiency η(t) at the maximum of the incident
pulse i.e. η0=η(t=0). Nevertheless the expression of η0 depends on
the crystal characteristics and also on the incident intensity I0:
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χeff
(2) is the effective second-order susceptibility and nω

0 is the
ordinary refractive index at the fundamental wavelength (λ) for the
nonlinear crystal of length L. I0 is the maximum intensity (peak
intensity) of the injectedpulse. Thebehavior ofη0 is represented in Fig. 2
as a function of I0 for different crystal lengths in the case of β-barium
borate (β-BBO cut at θ=22.8 ° for type I interaction). The two dashed
vertical lines shown on Fig. 2 indicate the estimated range of the
intensity inside the cavity (determined by both the gain medium and
the GaAs platelet inserted in the cavity as a TPA) in our experimental
setup [10,11,13]. By rescaling Fig. 2 one can find η0 for any different
crystal types and irradiation intensities, and thenfind the corresponding
crystal length that should be used in the laser oscillator. Noteworthy
Eq. (2) is an approximation for an incident plane wave, which is not
generally the case in experiments. However integrating the instanta-
neous conversion efficiency η(t) over temporal profile and spatial
distribution variations, as shown in Eq. (3), results in an overall
conversion efficiency ηoc more adequate for comparison to experimental
data. Table 1 shows the correspondence between the peak-power
conversion efficiency ηo and the overall efficiency ηoc calculated for a
dichroic mirror
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oubling nonlinear crystal (see the text for more details).
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Fig. 3. Contour lines of the reflected peak intensity Ir as a function of the peak-power
conversion coefficient η0 (horizontal, the symbol⊗ indicates the discontinuity at
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TEM00 mode with a Gaussian temporal profile. One can check from
Table 1 that ηoc is always smaller than ηo.

ηoc η0ð Þ=
∫
∞

0
∫
∞

0
η r; t;η0ð ÞI t; rð Þr drdt

∫∞
0
∫∞
0
I t; rð Þr drdt

ð3Þ

with I(t, r)= I(t)I(r)=exp[−4 ln 2(t /τ)2]exp[−2(r /w)2] for TEM00,
where τ is the pulse width and w the beam waist. In this theoretical
treatment, we mainly take a Gaussian temporal shape of the incident
optical pulse Ii(t)=exp(−4t2 ln 2) with full width at half maximum
(FWHM) equal to unity. Therefore, the instantaneous reflected pulse
intensity Ir(t) is given by:

Ir tð Þ=RNL t;η0;Rωð ÞIi tð Þ for η0∈ 0; 1½ and Rω∈ 0; 1½ �:½ ð4Þ

In the next sections we define a set of three figures of merit as
functions of Rω and η0.

2.2. The reflected intensity (Ir)

As a first step, using the formalism described in the previous section,
the map of the peak values of the reflected intensity Ir is calculated as a
functionof Rω andη0. The corresponding contour lines of Ir are drawnon
Fig. 3 where one observes, as expected, that the maximum reflected
intensity is obtained in the upper right corner of the graph for Rω=1
and η0 close to 1. Since Eq. (1) and consequently Eq. (4) have a
discontinuity at η0=1 —besides that, this value doesn't represent any
practical physical situation — a circled cross symbol⊗ is shown on η0

axis at the value 1 in all figures from 3 to 7. In this case the last
numerically calculated value of Eq. (1) is for η0=0.999.
Table 1
Overall conversion efficiency ηoc versus peak-power conversion efficiency η0 for a
Gaussian temporal pulse and TEM00 mode.

η0 ηoc

0.01 0.0036
0.10 0.037
0.25 0.096
0.50 0.21
0.80 0.42
0.95 0.62
0.99 0.75
2.3. The normalized pulse shortening ratio (PSR)

As a second step, we calculate the ratio between the FWHM of the
instantaneous reflected intensity Ir(t) and the incident one Ii(t), which
is called pulse shortening ratio (PSR). Contour lines of the normalized
pulse shortening are drawn on Fig. 4 as a function of the reflection
coefficient Rω and of the peak-power conversion efficiency η0. The
normalization is performed as follows:

PSR η0;Rωð Þnormalized=
PSRmax−PSR η0;Rωð Þ

PSRmax−PSRmin
; ð5Þ

where the maximum and minimum values are taken over the entire
variation range of η0 and Rω. In the case of a Gaussian pulse, those
values are PSRmax=1, PSRmin=0.836 respectively. Hence the best
efficient pulse shortening process is characterized by the minimum
value PSRmin and consequently by the maximum value of the
normalized pulse shortening ratio (equal to unity) that is being reached
for η0=0.77 and Rω=0 as shown in Fig. 4. This latter outcome is not
useful in practice because then as can be seen from Fig. 3, the reflected
intensity Ir tends to zero, whereas the maximum reflected intensity
is reached for very high values of Rω.
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Fig. 4. Contour lines of the normalized pulse shortening ratio (PSR) as a function of
peak-power conversion coefficient η0 (horizontal, the symbol⊗ indicates the discon-
tinuity at η0=1) and reflection coefficient Rω (vertical). The gray scale intensity is
displayed on the right.
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The shortcoming of the pulse shortening ratio leads to defining the
compression factor (CF) of the pulse, i.e.:

CF η0;Rωð Þ=PSR η0;Rωð Þnormalized× Ir η0;Rωð Þ; ð6Þ

Note that the map of the reflected intensity is generally
normalized because its maximum and minimum vales are equal to
1 and 0 respectively. Fig. 5 shows the contour lines of the compression
factor with respect to η0 and Rω for a Gaussian incident pulse. Like the
other factors the best performance of the compression process should
be achieved for a compression factor equal to unity, which is not
reachable by our device as shown in Fig. 5. The maximum value of the
compression factor is about 0.35, obtained for η0 in the range from
0.66 to 0.92 and Rω from 0.23 to 0.54, which indicates the
performance limit of the FDNLM as a pulse temporal compressor.

2.4. The normalized Gaussian shape factor (GSF)

So far, our choice for the basic parameters of the FDNLM did not
take into account the detailed shape of the reflected pulse although it
is an important factor for making a good oscillator, especially when
the FDNLM is installed as the output coupler, i.e. the reflected and
transmitted pulses will be deformed by the nonlinear reflection
coefficient of the device. For that purpose, we define a new figure of
merit called Gaussian shape factor (GSF) describing how much the
reflected pulse is distorted from the original Gaussian shape. The
value of the Gaussian shape factor is obtained by calculating the
standard error value between the curve of the reflected pulse Ir(t) and
a Gaussian curve IG(t) that shares the same peak intensity and FWHM
as given by the expression:

GSF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

n=1
Ir nð Þ−IG nð Þ½ �2

N−1

vuuut
; ð7Þ

where N is the number of points taken for each curve. As the pulse
shape is symmetric around the zero point we take N=100 for only
one side of the curve to guarantee a relative error smaller than 0.002%.

Then the normalized form of the Gaussian shape factor is given by:

GSF η0;Rωð Þnormalized=
GSFmax−GSF η0;Rωð Þ

GSFmax−GSFmin
ð8Þ
In the case of a Gaussian incident pulse, GSFmax=0.006 and
GSFmin=0. The contour lines of the calculated normalized Gaussian
shape factor are depicted on Fig. 6. As mentioned before, the best
performance of the device operation is expected for the minimum
Gaussian shape factor and consequently for the maximum of the
normalized one (i.e. equal to one). Themaximum is reached in the left
and top boundaries of the map corresponding to unpractical
situations when η0=0 (i.e. no device at all) and Rω=1 (i.e. no
output), respectively. Surprisingly normalized Gaussian shape factor
values as high as 0.85 can be reached even for high η0 values and
moderate Rω values that is very close to the best pulse temporal
compression performance of the device. Thus following the trend of
Fig. 6, we can improve the normalized GSF by a factor of 3, while
getting higher compression.

2.5. The decision factor (DF)

In order to decide about the best η0 and Rω values, we need to
assemble the three aforementioned factors in a new figure of merit
called the decision factor (DF) expressed as the weighted product of
the normalized pulse shortening ratio PSR, the reflected peak
intensity Ir, and the normalized Gaussian shape factor GSF raised to
the powers s, p and g, respectively, as follows:

DF η0;Rωð Þ= PSR η0;Rωð Þnormalized

� �s × Ir η0;Rωð Þ½ �p× GSF η0;Rωð Þnormalized

� �g
:

ð9Þ

The latter numerical exponents are introduced to show or to put
emphasis on the different factors involved. Varying s, p, g over the
useful interval from 1 to 3, will result in slightly different regions
hence we only present the most significant maps in Fig. 7:

− In the upper left panel we show the calculated contour lines of the
decision factor for s=1, p=1, g=1 (equal balancing between the
three involved factors) for which one can readily conclude that the
best theoretical operation of the FDNLM is situated in the A region,
where η0∈ [0.77, 0.88] and Rω∈ [0.25, 0.53].

− Furthermore putting the emphasis only on the shortening
mechanism by setting s=3 (with p=g=1), will result in
displacing the region towards lower Rω values, as shown in the
upper right panel. Thus, the best performance is located in the
region B, where η0∈ [0.78, 0.88] and Rω∈ [0.15, 0.28]. This latter
situation is more appropriate for PPT lasers and especially for
flashlamp-pumped lasers, in which efficient pulse compression is
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crucial because of the limited number of round trips inside the
cavity.

− Setting p=3 (with s=g=1) leads to emphasizing the reflected
intensity, as shown in the lower left panel, which is important for
confining the energy inside the cavity, as it is the case for CPT
lasers. In this case the, the best performance is shifted toward the
region C, where η0∈ [0.75, 0.88] and Rω∈ [0.45, 0.70].

− In the lower right panel, the importance of the normalized Gaussian
shape factor is emphasized by setting g=3 (with s=p=1). The
resulting contours showmore vertical elongation whichmeans that
the condition of minimum deformation can be satisfied for both low
and high values of Rω. The latter fact demonstrates that the FDNLM
can be effectively employedwithminimumdeformation introduced
inside the cavity for both PPT and CPT lasers.

Noticeably all maps in Fig. 7 commonly indicate that the best
performance of the device is expected for high η0 values, in the range
between 0.75 and 0.88, but not too high. This can be highlighted by going
back to Fig. 2 where the η0 curves for different crystal lengths (1 mm to
10 mm) showing an almost linear behavior of η0 for values higher than
0.5 and lower than 0.9 where saturation starts and will result in larger
deformation of the temporal profile of the laser pulse. Therefore
measuring the variation domain of the SH peak-conversion efficiency
η0 shall be our main objective in the next section (Experimental results).

3. Experimental results

In this section we present an experimental investigation about a
flashlamp-pumped oscillator, actively and passively mode-locked
with both passive-positive and negative mode-locking using FDNLM
and TPA components, respectively. The FDNLM consists of a BBO
crystal of 3 mm length and a dichroic mirror (Rω=0.30) placed at one
end of the cavity of a flashlamp-pumped Nd:YAG oscillator. Next to
the output mirror we placed a prism to separate the fundamental
wavelength and second harmonic beams apart at relatively long
distance, where PIN Si photodiodes are placed with a lens to collect all
the incoming light. However, since the transmission of the dichroic
mirror is about 0.7 for the fundamental i.e. too high to the value of
0.0007 for the second harmonic, we use a neutral density filter (OD 3)
to obtain comparable intensities on the photodiodes.

The complete time-evolution of the fundamental and generated
second harmonic pulse-trains extracted from the cavity is presented
in Fig. 8 (lower panel). The signals (a) and (b) represent the recorded
and rescaled energies (i.e. taking into account the transmission factors
of all components inserted in the path from the crystal to the
detector) of the fundamental and second harmonic pulse-trains
respectively. The overall conversion efficiency is deduced by taking
the ratio of the second harmonic energy to the sum of both FW and SH
energies as depicted by curve (c) in the upper panel of Fig. 8. As
aforementioned, η0 can be calculated by using exponential-expansion
fit to the inverse of Eq. (3) as follows:

η0 = 528:7678 × exp
�ηoc

1:3608

� 	
−526:5179 × exp

�ηoc

1:3451

� 	
−2:24998:

ð11Þ

The average error of this expression is less than 1% over the whole
range. The curve (d) in the upper panel of Fig. 8 represents the
estimated peak-conversion efficiency. As one may observe in the
lower panel, the two curves show different behaviors with respect to



-50 0 50 100 150
0

50

100

150

200

250

-III--II-

(b) SH

(a) FW

Round-trip number

-I-

0.0

0.2

0.4

0.6

0.8

1.0

(d) Estimated peak conversion efficiency

E
ne

rg
ie

s 
[μ

J]
C

on
ve

rs
io

n 
ef

fic
ie

nc
ie

s

η0

ηOC

(c)Measured overall conversion efficiency

Fig. 8. Lower panel: Pulse-train envelopes measured by a 100 MHz bandwidth
oscilloscope with PIN Si photodiodes. The curves (a) and (b) represent the recorded and
rescaled energies of the fundamental and second harmonic pulse trains, respectively.
Upper panel: curves (c) and (d) show the measured overall conversion efficiency ηoc
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Note that one round trip time is equal to 10 ns.

Table 2
Some reported experimental data of both η0 and Rω for successful mode-locking by
means of an FDNLM. Note that CPT, PPT, FLP, and DP stand for continuous pulse-train,
pulsed pulse-train, flashlamp pumping, and diode pumping, respectively.

Ref η0 Rω Laser medium; type/pumping;
SH generator; pulse width

4 (ηocN0.30) N0.64 0.25 Nd:YAG; PPT/FLP; x mm KTP-II; 100 ps
23 0.73 0.77 Nd:YAG; PPT/DP; 3 mm KTP-II; 41 ps
23 0.73 0.77 Nd:YAG; PPT/DP; 3 mm KTP-II; 42/32 ps
23 0.73 0.69 Nd:YAG; PPT/DP; 3 mm KTP-II; 45 ps
23 0.73 0.69 Nd:YAG; PPT/DP; 3 mm KTP-II; 45/29 ps
23 0.73 0.65 Nd:YAG; PPT/DP; 3 mm KTP-II; 33 ps
23 0.37–0.51 0.77 Nd:YAG; PPT/DP; 5 mm BBO-I; 31/26 ps
23 0.37–0.51 0.69 Nd:YAG; PPT/DP; 5 mm BBO-I; 32/25 ps
24 (ηoc=0.38) 0.75 0.24 Nd:YAP; PPT/FLP; 20 mm LiIO; 15 ps
25 0.80 0.25 Nd:YLF; PPT/FLP; 15 mm LBO-I; 13 ps
26 (ηoc=0.10) 0.26 0.78

(optimum)
Nd:YAG; CPT/DP; 15 mm LBO-I; 10 ps

27 (ηoc=0.10) 0.26 0.775 Nd:YLF; CPT/cw FLP; 15 mm LBO-I; 13 ps
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the number of round trips (one round trip is about 10 ns). This leads
us to divide the pulse train into three time intervals, where the first
one shows very low intensities with high fluctuations making the
conversion efficiency too difficult to be deduced. After that the
intensities become high enough to give a good estimation of the
conversion efficiencies as shown in intervals II and III. A relatively
large intensity variation of both curves (a) and (b) is observed in the
interval II, where the mode-locking process is dominated by the
AOML. The second harmonic intensity increases with increasing
intensity of the fundamental and so does the deduced η0 until it
reaches the maximum value of about 0.8. A peak-conversion
coefficient η0 of 0.8 is a very high value and the last measurements
show that this could be achievable under tight focusing of the TEM00

mode inside a relatively thin crystal. Note that the maximum of η0

does not coincide with the maximum of the second harmonic
intensity, which may indicate the beginning of saturation of the
generation process inside the crystal. Then both intensities of
fundamental and second harmonic pulse trains continue to grow
until the second harmonic reaches the maximum first and then the
fundamental, which confirms the saturation inside the crystal. After
reaching the maximum of the fundamental, all curves decrease
together until they reach stable steady values indicating the beginning
of the third interval, where a stable operation ofmode-locking process
is clearly observed due to the hybrid function of both FDNLM and TPA.
In this case η0 stabilizes around the value of 0.68.

Now, projecting our experimental values of η0 and Rω (noticing
that a stable mode-locking has been observed for different values of
Rω 0.2, 0.25, 0.30, and 0.35) leads us to define a practical operating-
domain represented by region E in Fig. 7. Region E is very close to
region A (upper left panel) that represents the highest values of the
unweighted decision factor. Furthermore, region E is even closer to
region B (upper right panel) where the range of Rω values is lower
than that of Awhich is indeed expected (as mentioned in the previous
section) since the limited number of round trips in PPT laser has put
more weight on the shortening mechanism. Actually obtaining very
high values of η0N0.8 seems experimentally too difficult and this is
the reason that prevents the two regions E and B from being
superimposed. In region C, the best performance is shifted to higher
Rω values with a larger choice of η0.

In order to reinforce our point of view we have looked at other
available experiments where successful mode-locking with a FDNLM
installed as an output coupler and both parameters η0 and Rω are
reported. These data are listed in Table 2 and plotted on Fig. 7where the
results of PPT and CPT lasers are represented by different symbols.
Almost all results of flashlamp-pumped PPT lasers (open squares) are
situated within the region E which is in accordance with our
observations [4,24,25]. Diode-pumped PPT lasers (open circles) are
shifted to higher values of Rω and get closer to region C, which indicates
that thepumpingenergies aremostly lower than theones obtainedwith
flashlamps [23]. Finally, the pumping level inCPT lasers is too lowand so
is their conversion coefficient η0 as shown in Fig. 7 [26,27]. Tracking the
contours in the lower right corner of the panels points out to the good
matchingwith the experimental data, and leads us to conclude that the
FDNLMcan bewell employed as an output coupler. Consequently, these
facts clearly demonstrate the validity of our method to determine the
best choice of the physical parameters η0 and Rω of the FDNLM device
either in PPT or in CPT lasers with attention to the pumping technique.

4. Conclusion

We have presented a detailed post-model analysis of the FDNLM
used as passive-positive feedback element in an Nd:YAG laser cavity.
Starting from the Stankov model, we deduced a certain number of
figures of merit that allow quantifying and optimizing the operation of
the device. The calculated parameters could be successfully con-
fronted to experimental measurements from an operating system.
Moreover this work shows the capacity of the post-model analysis to
highlight the processes alongside the physical model, as well as to
clarify our perception about the device functioning that could be
easily generalized to the different versions/schemes of this device
[28–32] and furthermore to the other mode-locking techniques.
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