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Nonlinear optics has been enabled by the invention of the laser 50 years ago, and since then both tech-
nologies evolved together complementing and enabling each other. In this paper we attempt to briefly
overview the historic development of second-order nonlinear materials and try to discern the trends
which might dominate developments in the future. The advent of methods of quasi-phase matching
and added degrees of freedom in managing three-wave mixing processes pushed the field of nonlinear
optics into the realm of engineering. This trend, we believe will continue in the future. In this text we give
a short description of design principles of one-dimensional and two-dimensional quasi-phase matched
structures and emphasize the increased functionality afforded by such structures. We also overview
the nonlinear media where engineering of nonlinear interactions has been demonstrated with the pri-
mary focus on ferroelectric and semiconductor nonlinear crystals.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction historical remarks Indeed, just a year after the laser invention, in 1961 Franken dem-
Year 2010 marks half of a century since the first laser action
demonstration in ruby by Maiman [1]. The research effort in lasers
was already substantial at that time and the ruby laser was fol-
lowed by demonstrations of lasing in other solid-state dielectric
hosts in a rapid succession [2–4]. Laser emission from GaAs p–n
junctions have been also demonstrated in 1962 [5], although the
technology had to be improved by introduction of double hetero-
structures before it became the major contender in the laser appli-
cations field. The significance and usefulness of the technology has
been perceived early on, even before the invention of the ruby la-
ser. The fact that large part of the early laser technology develop-
ment was done in well-funded industrial labs [2–5] and the
remarkable speed at which the newly appearing lasers were com-
mercialized attests to the great expectation that the laser would be
one of those technologies which can revolutionize broad range of
existing applications and open up new ones. The brief span of his-
tory since the laser invention indeed bears witness that these
expectations were indeed met and exceeded. The subsequent laser
technology development brought about laser sources at wave-
length ranges from ultraviolet to sub-millimeter as well as unprec-
edentedly high peak powers and excellent spatial and temporal
coherence properties.

High peak power of coherent radiation immediately opens up
possibility for exploiting nonlinear response in optical materials.
ll rights reserved.

vicius).
onstrated second harmonic generation (SHG) in quartz [6]. It was
estimated that about 1011 second-harmonic photons were gener-
ated in that first experiment from 3 J of input free-running ruby la-
ser pulse, giving a conversion efficiency of about 10�8. This
experiment marked the birth of the field of nonlinear optics which
complemented very fruitfully the technology development of la-
sers. By employing upconversion and downconversion processes,
the wavelength ranges unreachable by laser sources became avail-
able for different applications. Moreover, the nonlinear optical
interactions later become recognized as key for ultrashort pulse
generation in bulk and fiber lasers. The low efficiency issue had
been solved very quickly. In 1962 papers by Giordmain [7], and
Maker et al. [8] published in the same issue of Physical Review Let-
ters pointed out the need for phase matching and demonstrated
birefringence phase-matching in KDP. The paper by P.D. Maker
contains the first demonstration of what has become known as
the Maker fringe technique used to this day for characterizing sec-
ond-order nonlinear coefficients in new nonlinear materials. A rig-
orous theoretical development was in works at the same time at
Harvard University. The seminal paper by J.A. Armstrong and
coworkers which was published the same 1962 year provided a
very detailed theoretical framework of nonlinear interactions of
electromagnetic waves in dielectric media [9]. There, accurate
solutions of the CWE for three-wave mixing in the plane wave
approximation have been obtained. G.D. Boyd and D.A. Kleinman
extended the theory to interactions for more realistic focused
Gaussian beams in 1968 [10].

From the start, the experiments in nonlinear optics were limited
by the obvious requirements of phase matching and high intensity
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in order to harness the nonlinear polarization contributions. Initial
experiments were carried out using crystalline quartz and KH2PO4

(KDP) as the nonlinear media. Both materials have good transpar-
ency in the region of the second harmonic of ruby laser; however,
it was clear that the low nonlinearity and dispersion would limit
the application range of these materials. This problem was appre-
ciated from the very beginning of nonlinear optics. Armstrong et al.
in Ref. [9] already proposed several methods which would allow an
increased effective nonlinear interaction length in the crystals with
non-perfect phase matching. The idea hinges on periodic re-setting
of the nonlinear interaction phase as will be explained in more de-
tail in the next section. The proposed methods and their later vari-
ants are now collectively called quasi-phase matching (QPM)
techniques.

Over the past 50 years a large number of second-order nonlin-
ear crystals have been synthesized and demonstrated [11,12].
The prolific bibliography of nonlinear crystals is somewhat mis-
leading however, as the large part of the synthesized crystals have
never reached beyond the simple characterization stage. One can
define a figure of merit for second-order nonlinear crystal as
FOM ¼ Idd2

eff =n3 , where Id is the optical damage intensity, deff is
the effective nonlinear coefficient and n is the index of refraction.
This definition is somewhat arbitrary because the optical damage
intensity is a function of operation conditions such as pulse-length,
average power and wavelength but, nevertheless, it can serve as a
good guide for initial crystal selection. Even if FOM is large for cer-
tain crystal, other consideration can prevent it from being adopted
for applications, for instance the difficulty of growing to large-vol-
ume, toxicity of the growth process, etc. As a result, after 50 years
there are only a few crystals, specifically those which allowed bire-
fringence phase matching for upconversion or downconversion
using standard lasers based on rare-earth ions and Ti:Sapphire that
have reached commercialization stage. Although the following list
is not exhaustive, we can identify ten birefringence phase matched
crystals, namely, KDP, b-BaB2O4 (BBO) [13], LiB3O5 (LBO) [14], CsLi-
B6O10 (CLBO) [15], BiB3O6 (BiBO) [16], MgO:LiNbO3 [17–20], KTiO-
PO4 (KTP) [21], ZnGeP2 (ZGP) [22,23], CdSiP2 (CSP) [24], DAST
[25,26] which have found or are expected to find their application
niches.

Usually, the selection of particular crystal entails compromise of
the above-mentioned physical, technological and economic con-
straints. For instance, KDP and its isomorph DKDP have a rather
low nonlinearity of d36 = 0.39 pm/V [11] and are hygroscopic, but
they have excellent transmission properties and they can be grown
to very large crystal sizes suitable for inertial fusion systems [27].
Another example of the application-driven crystal development is
found in the family of borates. Here CLBO crystal was developed with
the view of the optical lithography roadmap which required shifting
the wavelength of the optical lithography sources down to 193 nm
[28]. CLBO was promising due to possibility of phase matching be-
low 200 nm, substantially lower Poynting vector walk-off than in
BBO and a potential for growth of large crystal sizes [15]. Indeed
all-solid-state systems have been demonstrated [29,30] but at pres-
ent it is hard to see them competing in terms of energy, and average
power with more established ArF excimer lasers. Probably the most
important lesson that the nonlinear optical materials community
had to learn over the past two decades is the economic one. Due to
a long development and technology refinement time with associ-
ated expenses it takes a very strong argument of strategic applica-
tions with a long-term horizon in order to motivate an effort in
new crystal development. One of such instances might be the devel-
opment of organic DAST and semiconductor CSP crystals motivated
by the requirements for high-power tunable mid-infrared and far-
infrared coherent sources [24,31].

However, the picture above is not complete until we consider
the nonlinear media employing the QPM principles. There are
two points which we hope to prove, at least in part, in this article.
First, the QPM technique provides additional degrees of freedom
allowing design of spatial and temporal properties of nonlinear
interactions. Second, the additional capabilities afforded by the
QPM techniques shifted focus in the field of nonlinear materials
from the synthesis of new crystals with specific phase matching
and nonlinear properties towards the engineering of nonlinear
interactions and refining materials which can take advantage of
the QPM techniques. This shift was gradually happening over the
last 20 years. The result of this development is something which
can be thought of as a nonlinear optics engineering toolbox which
could be added to the existing and developing laser engineering
methods. Although this shift occurring in the nonlinear optical
materials field is not nearly as dramatic and disruptive as the
invention of the laser 50 years ago, its importance should not be
underestimated.

In the following sections we will briefly outline the principles,
advantages and problems associated with structured nonlinear
media as well as current development status of QPM materials. It
is our view that the future advances in applications of QPM media
will depend in a crucial way on further efforts in material research
which could address specific issues related to the reliability, the
lifetime, scaling to larger energies as well as addressing the struc-
turing technology itself.
2. How QPM can work for you

As mentioned above, the QPM principle has been introduced in
1962 by Armstrong and co-workers [9]. The idea is in principle
very simple. Inspection of the coupled wave equations (CWE) gov-
erning three-wave mixing (TWM), the lowest-order nonlinear pro-
cesses, satisfying the energy conservation relation

x1 ¼ x2 þx3; ð1Þ

shows that the generated field intensity integrated over the interac-
tion area will be very low unless the momentum conservation
condition

Dk ¼ k1 � k2 � k3 ¼ 0; ð2Þ

is also satisfied. Indeed, for each propagation length, equal to the
coherence length lc = p/|Dk| the phase difference of p is accumulated
by the interaction and the TWM process reverses its direction. By
adding a phase shift ofp periodically every coherence length, the field
intensity of the generated wave(s) will keep increasing. This can be
achieved by several methods including periodic total internal reflec-
tion, periodic propagation over dispersive phase-slip regions, or
periodic inversion of the sign of the second-order nonlinear coeffi-
cient [9]. The simplest QPM method is based on employing the phase
shift due to a periodic total internal reflection. It has been
demonstrated first in 1966 by frequency doubling of a CO2 laser in
plane-parallel slabs of GaAs and ZnSe [32]. The method was also
revisited later [33,34]. Although the method is simple, it has two
drawbacks. First, the number of reflections is limited due to the
surface scattering losses and the beam separation owing to
Goos-Hänchen shift at the boundary [35]. Second drawback is that
the possibilities for interaction engineering are limited. A substan-
tially more versatile technique to introduce the required phase shift
is by spatially structuring the second-order nonlinearity. This can be
achieved by different methods as will be overviewed in the following
section.

For the sake of completeness and in order to give a better under-
standingoftheQPMdesignprinciplesweprovidehereabrieftheoret-
ical description of the second-order interaction in media with
spatially structured second-order nonlinear coefficient dij ¼ vð2Þikl =2
where vð2Þikl is the second-order susceptibility tensor. The TWM of Eq.
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(1) is described by the CWE, which, in the slowly varying envelope
approximation for monochromatic plane waves can be written:

k1 � rE1 ¼ �i
x2

1

c2 dijE2E3 expðiDk � rÞ;

k2 � rE2 ¼ �i
x2

2

c2 dijE1E�3 expð�iDk � rÞ;

k3 � rE3 ¼ �i
x2

3

c2 dijE1E�2 expð�iDk � rÞ;

ð3Þ

where c is speed of light in vacuum and r is the spatial coordinate.
For simplicity, consider a process where two waves are much stron-
ger than the third one and assume that depletion is not important.
Then Eq. (3) simplifies to a single equation. Consider a sum-fre-
quency mixing (SFM) process (Eq. (1)) in a medium which contains
one-dimensional (1D) structure of nonlinear coefficient distributed
along the x-axis coinciding with the direction of wave-vectors,
d(x) = dijg(x), where g(x) can take values of ±1 inside the nonlinear
medium and is zero elsewhere. Analysis of a periodic 1D structure
of this kind has been done in Ref. [36]. In general, integrating the
first equation in Eq. (3) over the length L gives:

E1ðLÞ ¼ �i
x1

n1c
dijE2E3

Z 1

�1
gðxÞ expðiDkxÞdx: ð4Þ

It is clear from Eq. (4) that the field magnitude at the sum frequency
will be proportional to the Fourier transform of the spatial distribu-
tion of the nonlinear coefficient. If the crystal is homogeneous, i.e.
g(x) = 1, for �L/2 6 (x) 6 L/2, it is straightforward to see that the
field at SFM frequency at the end of the crystal will be

E1ðLÞ ¼ �i
x1

n1c
dijE2E3LsincðDkL=2Þ; ð5Þ

where sinc(x) = sin (x)/x. The intensity of the generated SFM wave
then is

I1ðLÞ ¼
2x2

1

n1n2n3c3e0
d2

ijI2I3L2sinc2ðDkL=2Þ; ð6Þ

where e0 is the permittivity of free space. Consider a 1D structure
containing periodic modulation of the sign of nonlinear coefficient
with a period of K and a duty cycle, D = l/K, where l is the length
within the period containing nonlinear coefficient of the same sign.
By approximating this periodic modulation of g(x) with discrete
Fourier series:

gðxÞ ¼
X1

m¼�1
Gm expð�iKmxÞ; ð7Þ

the Eq. (4) becomes

E1ðLÞ ¼ �i
x1

n1c
dijE2E3

X1
m¼�1

Gm

Z 1

�1
expðiðDk� KmÞxÞdx: ð8Þ

Apart from the nonlinear dependence on the field strength, the Eq.
(8) is formally analogous to the problem of X-ray scattering in crys-
tals with the Fourier coefficients

Gm ¼
2

pm
sinðpDmÞ; ð9Þ

corresponding to the electron-cloud scattering form-factors and the
structure wavevector

Km ¼
2pm
K

; ð10Þ

corresponding to the reciprocal lattice vector in crystals. Indeed the
mathematical treatment and theoretical design methods for struc-
tured nonlinear crystals is essentially borrowed from the field of so-
lid-state physics. For a given process with frequencies of the
interacting waves varying only slightly around their central
frequencies x2, x3 it is possible to find a single reciprocal vector
Km which would maximize the output at x1. Namely, the structure
should be designed to satisfy the QPM condition Dk = Km preferably
using the first order QPM (m = 1) as this also maximizes the Fourier
coefficient in Eq. (9). The SFM intensity at the end of the QPM struc-
ture can be expressed as:

I1ðLÞ ¼
2x2

1

n1n2n3c3e0
d2

ij
2

pm

� �2

sin2ðpmDÞI2I3L2sinc2ððDk

� KmÞL=2Þ: ð11Þ

It is evident that the QPM interaction is formally analogous to the
birefringence phase matched process (Eq. (6)), however, with the
nonlinear coefficient reduced by a factor of (2/(pm)) sin (pmD). It
should be stressed that the benefits offered by having an additional
design parameter Km in most cases far outweighs the drawback of
the reduced nonlinear response for QPM structures. Let us specify
some of those benefits: (1) QPM structures can be designed for
any TWM interaction within the transparency region of a particular
crystal, regardless of the birefringence properties. (2) It is often the
case that diagonal susceptibility tensor elements are the largest
ones, but they cannot be utilized by employing birefringence phase
matching. For example, in KTP the nonlinear coefficient employed
in birefringence phase matched TWM is d24 = 3.75 pm/V. In QPM
structures fabricated in KTP one can exploit the nonlinear coeffi-
cient d33 = 15.4 pm/V [37] thus giving almost 7-times larger effi-
ciency for the same crystal length. This possibility to use
substantially higher nonlinearity allowed demonstrations of CW-la-
ser and even laser diode-pumped singly-resonant optical paramet-
ric oscillators (OPOs) [38–41]. (3) Due to the fact that one does not
need to care about birefringence phase matching, the propagation
directions of the waves in QPM structure can be chosen to coincide
with one of the indicatrix axes. This eliminates Poynting vector
walk-off, which normally limits the usable crystal length in birefrin-
gence phase matched interactions.

Periodic modulation of the nonlinear susceptibility with a duty
cycle of 0.5 will maximize the Fourier component of the required
value of Dk and will result in the maximum conversion efficiency
for the first QPM order. However, even if the structure is not per-
fect or even random the TWM efficiency will be higher than in a
homogeneous non-phase-matched crystal [42,43]. Indeed, con-
sider the TWM process in a homogeneous crystal with a large
Dk. In this case the largest part of the power after the crystal will
be generated over the last coherence length, p/Dk. If the crystal
contains a random structure of the second-order susceptibility,
the generated power at x1 will increase linearly in proportion to
the number of domains encountered by the input beams (x2, x3)
[42,43]. Fig. 1 shows a comparison of the calculated dependence
of the SHG efficiency as a function of normalized crystal length
for the first order QPM (m = 1, Dk = K1), the fifth-order QPM
(m = 5, Dk = K5), for a homogeneous crystal with large phase mis-
match and for a crystal containing a random structure of nonlinear
coefficient where the domain sizes are distributed by Poisson dis-
tribution with the mean domain length of 4 lm and the variance of
4 lm. The fundamental wavelength here is 1 lm and the crystal
length is normalized to the nonlinear interaction length, Lnl = n1c/
(x1dijE2). Enhancement of the conversion efficiency by the pres-
ence of a random structure is evident. The random structure might
even give higher efficiency than higher-order QPM structure if the
crystal length is limited.

Potentially higher efficiency gained by employing QPM struc-
tures is obviously interesting for applications, especially those
using frequency conversion of CW and low power laser sources.
However, probably the strongest argument for using QPM technol-
ogy is that it gives possibilities to add functionality to the nonlinear
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process which is otherwise not possible to obtain using standard
birefringence phase matching.

The first demonstration of tunable optical parametric frequency
converter with QPM structures involved multi-period gratings fab-
ricated on a single chip [44]. Later on a fan-out grating design has
been proposed by P.E. Powers and co-workers to achieve continu-
ous tuning of the output wavelength by lateral translation of the
nonlinear crystal [45]. The continuous tunablity of a parametric
oscillator using noncollinear interactions have been later demon-
strated in simple single-period QPM structures [46,47]. Spectral
shaping of nonlinear interactions is an important tool for frequency
conversion of ultrashort pulses and for generation of widely tun-
able coherent radiation. The design procedure can be easily derived
by considering pulses at central frequencies x1, x2, x3 travelling
with their associated group velocities as given in Eq. (3). For sim-
plicity, considering the second harmonic process, x2 = x3, and by
introducing a coordinate frame moving with the group velocity
vg1 of pulse E1, i.e. s = t � x/vg1, the Eq. (4) can be transformed into
the form

E1ðL; sÞ ¼ �i
x1

n1c
dij

d

Z 1

�1
E2

2ðs� s0Þgðs0Þ expðiDks0=dÞds0; ð12Þ

where d ¼ v�1
g2 � v�1

g1 is the group velocity mismatch and s0 = xd. The
Eq. (12) contains a convolution integral, which directly tells us that
the spectrum of the second harmonic pulse will be equal to the
product of the Fourier spectrum of the square of the fundamental
pulse field and the Fourier spectrum of the QPM structure using s0

as a time basis. By making the QPM structure with varying period-
icity not only a broad spectral bandwidth can be generated but also
the generation process itself in such structures can be used for pulse
compression or pulse stretching [48–52]. For broadband parametric
gain shaping is also possible to employ noncollinear interactions
which are often used in birefringence phase matched TWM pro-
cesses, with the added advantage in the QPM case, that the spectral
wavelength range can be easily tailored to suit the application [53–
55].

The flexibility offered by the additional design parameter Km

(Eq. (8)) can be exploited in a straightforward way for quasi-phase
matching several processes in the same 1D structure. Indeed a
structure should simultaneously compensate for the phase mis-
match in any number N of TWM processes if it’s Fourier spectrum
contains appropriate reciprocal vectors Kmj = (Dk)j, j = 1 . . . N. This
flexibility has been exploited using several different designs [56–
59]. The Fourier components of the QPM spectrum can be added
by modulating periodicity of the structure. However, in order to
maximize the efficiency only in the TWM processes of interest
the Fourier spectrum ideally should contain only the needed reci-
procal vectors and not the quasi-continuous distribution of Fourier
components. That essentially means that the modulation function
should be non-differentiable. The generalized procedure of such
quasi-periodic QPM structure design, borrowed from the field of
crystallography has been outlined in Ref. [60] and later experimen-
tally demonstrated [59]. Moreover it has been proven that the effi-
ciency of multiple TWM processes in a quasi-periodic structure is
substantially higher than could be achieved in the same length of
the crystal containing composite periodic QPM gratings.

The special case of multiple processes occurring during a second-or-
der interaction is the degenerate or close to degenerate cascading of a
frequency doubling followed by a downconversion. It is well known
that v(2):v(2) cascading emulates a third-order nonlinear response
and can produce large intensity-dependent phase shifts [61]. Obvi-
ously, this process happens also in birefringence phase-matched mate-
rials, however due to much larger v(2) nonlinearity accessible in QPM
crystals, the effective third order nonlinearity due to cascading is also
substantially higher in this case. Moreover, the QPM structures can
be designed specifically for enhancement of cascading [62]. Specific
QPM structure designs have been proposed for shaping quadratic spa-
tial solitons [63] and such solitons have also been experimentally ob-
served [64]. A Kerr lens obtained through the cascaded interactions
was also utilized for passive mode-locking of solid-state lasers
[65,66]. Near-degenerate cascaded processes are equivalent to four-
wave mixing (FWM) parametric interactions occurring in the third-or-
der media. FWM processes are interesting for applications in all-optical
wavelength converters (AOWC), required by high-capacity optical
communications systems. One example of such cascaded FWM in a
periodically-poled KTP (PPKTP) is shown in Fig. 2. Here the narrow cas-
caded sidebands are generated in a narrowband (OPO) [67]. For in-
stance, generation of the first signal sideband involves two v(2)

processes xs1 = xs + xs�xi, etc. Recently, a polarization-insensitive
cascaded FWM AOWC scheme using periodically-poled LiNbO3 (PPLN)
waveguides has been demonstrated at 100 Gb/s capacity [68].

Optimization of the FWM parametric gain spectrum is also pos-
sible due to the capability to engineer the QPM structure. For in-
stance, by taking inspiration from well-developed techniques of
fiber Bragg gratings, an apodized QPM structure has been proposed
and demonstrated in PPLN [69]. Owing to the tapering of the do-
main duty cycle, the flat and ripple-free gain spectrum can be
produced.



Fig. 4. Backward CW SHG phase matching spectrum generated with a bulk PPKTP
structure containing a 720 nm periodicity.
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Over the last decade the structuring technologies in different
second-order nonlinear materials achieved finesse high enough
to start demonstrating nonlinear processes and devices which are
impossible in homogeneous media. This trend of synthesizing
new ‘‘reality’’ is bound to continue into the future and it indicates
stronger that anything told so far that the whole nonlinear optics
field has moved into the realm of engineering. Currently, to the list
of novel devices enabled by the QPM techniques we can put de-
vices employing counter-propagating TWM, backward-wave oscil-
lators and nonlinear photonic crystals (NPC).

Consider a Bragg reflector whose reflectivity and spectrum can
be externally modulated. This can be achieved if the Bragg reflector
consists of an electro-optic material with periodically structured
electro-optic coefficient. The periodicity of the structure,
Km = mk/2n, where n is the index of refraction, should be about a
quarter of the wavelength in vacuum for the first order reflection.
It is a challenging technological task to fabricate such structures as
will be discussed in the next section. Nevertheless, the spectrally
selective Bragg reflector operating at the third order of diffraction
has been demonstrated in a PPKTP structure with a domain period-
icity of 800 nm [70]. Backward SHG is another process which re-
quires a sub-wavelength periodicity of the QPM structure as can
be seen from the vector diagram in Fig. 3, namely, Km = mk/
(2(nx + n2x)). SHG at higher orders (down to 16th) has been dem-
onstrated in PPLN and PPKTP waveguides using pulsed pumping
[71,72]. CW backward SHG at 7th order has been obtained in a bulk
PPKTP structure with a period of 720 nm, as can be seen in the
phase matching spectrum in Fig. 4 [73]. One of the striking features
of a counter-propagating interaction is the high temporal coher-
ence of the backwards generated wave. For instance, the SHG
phase matching bandwidth for the quasi-CW excitation in the
structure of length L can be expressed as

Dk ¼ 0:443k2

Lðng1 � ng2Þ
; ð13Þ

where k is the fundamental wavelength, ng1 and ng2 are the funda-
mental and the second harmonic group indices, respectively. For the
backward SHG bandwidth one has to take the plus sign in the
denominator, which immediately tells us that the bandwidth for
the counter-propagating case will be at least order of magnitude
smaller than in the usual, co-propagating SHG.

The wave-vector diagrams for the collinear optical parametric
interactions are shown in Fig. 5, where the case for co-propagating
optical parametric generation (OPG), Fig. 5a is compared with
three possible counter-propagating cases Fig. 5b–d. To give an
example of the required structures to achieve these interactions,
in Fig. 6 we present the calculated QPM period as a function of
the quasi-phase matched parametric signal wavelength for all
three counter-propagating geometries. The calculation was done
for PPKTP and it was assumed that the pump wavelength is
822 nm. As can be seen from the Fig. 6, all these processes require
QPM structures with sub-micrometer periodicity fabricated over a
length on the about 1 cm or more in order to keep the generation
Fig. 3. Wave vector diagram for backward SHG.
threshold comfortably far from the optical damage threshold. If
one of the waves, the signal or the idler, are counter-propagating
then it is possible to obtain a mirrorless oscillation due to the auto-
matically-established distributed feedback, schematically illus-
trated in Fig. 7, for the case of the idler-counter-propagating
mirrorless optical parametric oscillator (MOPO). The MOPO was
theoretically proposed already in 1966 in Ref. [74], where it was
also emphasized that the birefringence in homogeneous second-
order crystals is not large enough to realize this device. Instead,
the MOPO has been demonstrated in QPM structures [75,76], and
it took 31 year for the structuring technology to achieve the re-
quired level of precision and to reach a sophistication where this
was possible. Counter-propagating parametric interactions offer
rather unique spectral properties as well. It is notoriously difficult
to obtain a narrowband spectrum in mid-infrared using standard
co-propagating OPOs, especially when operating close to degener-
acy. This statement is especially true for the QPM OPOs using peri-
odically poled KTP, LiNbO3 or LiTaO3, which employ signal and
idler waves of the same polarization, in order to take advantage
of the largest nonlinear coefficient. It is instructive to compare
the MOPO spectrum with the spectrum of a co-propagating PPKTP
OPG pumped by picosecond pulses at the same wavelength as the
MOPO, and generating signal and idler in the same spectral region.
For the co-propagating OPG we used PPKTP with a QPM period of
28.5 lm. The comparison of the signal spectra generated in the
MOPO and the co-propagating OPG can be seen in Fig. 8. Here,
the co-propagating OPG generates a signal with a FWHM spectral
width of 32.7 THz. The material dispersion characteristics are
being the same for the MOPO, nevertheless it generates a signal
with a spectral width which is only 270 GHz. Furthermore, the
MOPO idler is more that an order of magnitude narrower than
the signal, less than 23 GHz, as verified in the measurement limited
by the resolution of the spectrometer.

The structuring of the second-order nonlinearity does not need
to be only one-dimensional. The structuring technology which is
based on a planar lithography allows straightforward extension
of the QPM principles into a 2D case. Theoretically such structures,
also called nonlinear photonic crystals, were proposed by Berger in
1998 [77]. Indeed the solutions of CWE, (see Eq. (3)) by extending
the TWM solution of Eq. (8) to a 2D case, can be written [53]:

E1 ¼ �i
x1

n1c
dij

w
E2E3

ZZ
1

gðrÞ expðiDk � rÞ � dxdy; ð14Þ

where w is the width of the interaction area. The modulation func-
tion, g(r), is composed of three parts, a 2D mesh of delta functions
describing the periodic pattern which is convoluted with a motif



Fig. 5. Quasi-phase matching wavevector diagrams and momentum conservation relations corresponding to the collinear optical parametric interactions. Co-propagating (a),
idler counter-propagating (b), signal counter-propagating (c), signal and idler counter-propagating (d) interactions.
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function describing the geometry of the domain centered at each
real space grating nod and multiplied by an interaction area func-
tion. Therefore, as in the 1D case, the Eq. (14) tells us that the
SFM electric field amplitude will be proportional to the Fourier
transform (2D) of the nonlinearity modulation function. For some
geometries, such as those containing periodic patterns of rectangu-
lar or circular motifs it is possible to find analytic solutions [78]. The
NPC was first demonstrated in LiNbO3 2D-periodically poled with
hexagonal pattern (HexLN) [79]. An example of a 2D periodically
poled KTP with a rectangular lattice periodicity of 6 lm is shown
in Fig. 9 [80]. Here, the polar surface of the crystal has been etched
to reveal domains with opposite signs of the second-order nonlin-
earity. Exactly as in solid-state physics one can construct a recipro-
cal lattice orthogonal to the real-space lattice, (ax, ay), such that
ai � Kj = 2pdij. Quasi-phase matching for a TWM process will be
achieved in the directions where the phase mismatch is compen-
sated by a linear combination of the reciprocal lattice vectors as
shown in Fig. 10:

Dk ¼ k2x � 2kx ¼ Kmn ¼ mK10 þ nK01: ð15Þ

The theoretical and the experimental mapping of the reciprocal lat-
tice vectors in the above-described 2D PPKTP is demonstrated in
Fig. 11 for the SHG process at the fundamental wavelength of
946 nm.

The capability to structure nonlinearity in 2D opens up some
very interesting possibilities for shaping spectral and spatial beam
properties in TWM. And the pattern does not need to comprise a
2D lattice. Interesting examples here can be Airy beam generation
in TWM where the pattern consists of a periodic stack of cubic
functions [81] or Bessel beams which can be generated in the



Fig. 9. Rectangular pattern in a 2D-poled KTP with a periodicity of 6 lm. The inset
shows the usual 1D pattern in PPKTP.

Fig. 10. Reciprocal lattice for a rectangular real-space lattice. The case of quasi-
phase matching of SHG by using the reciprocal lattice vector K11.
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nonlinear structure consisting of periodic concentric rings [82].
There is no doubt that the demonstrations of this novel functional-
ity in 2D-structured nonlinear media will continue in the future.
3. Progress in QPM materials

Early attempts to employ artificially structured nonlinearity for
enhancement of TWM interactions was by using stacked plates of a
nonlinear material where adjacent layers are rotated by 180 de-
grees to give a sign reversal in v(2). This QPM method was demon-
strated in nominally non-birefringent semiconductors CdTe [83]
and GaAs [84,85] as well as crystalline quartz, LiNbO3 [86] and
LBO [87]. Clearly, the QPM structure consisting of stacked plates,
introduces additional losses due to multiple Fresnel reflections.
Integration of the plates into a monolithic stack was later achieved
by diffusion bonding the rotated plates of GaP [88] as well as GaAs
[89]. The stacking and bonding process requires some extensive ef-
fort in plate preparation in order to get homogeneous bonding con-
tact across the plates. Moreover, it is difficult to extend this
technique for structures operating in the mid-infrared spectral
range as the thickness of the plates becomes smaller than
100 lm. Consequently, the applications of this technique was
and will probably be in the far infrared and the THz spectral ranges.

Economic aspects are very important in the development new
materials and in broadening the range of applications of nonlinear
media. In this respect, the QPM media are not different from the
birefringence phase matched crystals. Therefore, it is not surprising
that a huge activity increase in the field of QPM devices which we
witnessed over the past 15 years came after the technologies ame-
nable for mass-fabrication and planar wafer processing were dem-
onstrated in commercially available nonlinear crystals with high
nonlinearities and relatively high damage thresholds.

Periodic inversion of spontaneous polarization domains in ferro-
electrics proved to be such enabling technology. Ferroelectrics and
their domain structures were investigated long before the invention
of the laser. The research in piezoelectric properties of such crystals
as Rochelle salt, KDP [90], LiNbO3 [17], BaTiO3 [91] was active in the
1950s. The early research, mostly at Bell labs, focused on piezoelec-
tric properties of such crystals. Manipulation of the domain struc-
tures by annealing and electric field poling in KDP and BaTiO3

[90,92] was also investigated in the piezoelectric context. Thus, by
the time the QPM concept was proposed in 1962, there already ex-
isted a large body of material research data on some ferroelectrics
including the possible methods of ferroelectric domain structuring.
It might be puzzling, why it took to 1980s for the nonlinear optics
community to start seriously exploiting the benefits of the QPM
technology in ferroelectric crystals. Probably there is no single and
simple answer, but a combination of factors, which prevented earlier
development of such materials. Such factors might have been a lack
of perceived need for more efficient nonlinear media, a slow and
expensive development of high- and reproducible quality ferroelec-
tric crystals, and the associated lack of knowledge of the dispersion
data, crucial for any QPM design. An important breakthrough came
when it was demonstrated that LiNbO3 boules with periodically in-
verted domains and with well-controlled periodicity could be pro-
duced directly during Czochralsky growth by keeping the growing
crystal at an angle with respect to the temperature field resulting
in a sinusoidal variation in segregation coefficient of the dopant, Y
[93]. A similar procedure was later applied to LiTaO3 [94].

Direct growth of large volumes of periodically structured non-
linear crystals might be a good proposition for mass production
if the need for such mass production exists. Probably a more flex-
ible technique of ferroelectric structuring is by using electric field
poling. The technique of periodic structuring of LiTaO3 using inter-
digital finger electrode pattern had already been demonstrated in
the field of ultrasonic transducers [95] in 1983. Periodic poling
using diffusion and thermal treatment was later studied for the
fabrication of nonlinear optical waveguides in LiNbO3 and KTP
[96–98]. In 1993 Yamada et al. [99] achieved a breakthrough in
small-period electric field poling in LiNbO3 waveguides which
were intended for blue light generation in the first-order QPM pro-
cess. This immediately opened up the opportunity for using peri-
odically poled LiNbO3 (PPLN) and PPKTP waveguides for
frequency conversion of low-power laser diodes. The following
substantial progress resulted in demonstration of a 99% fundamen-
tal power depletion in PPLN waveguide quasi-phase-matched for
SHG at the wavelength of 1552 nm [100]. Alternative techniques
for PPLN waveguide fabrication including a bonding technique
are currently being explored as a possible way to increase confine-
ment in a ridge waveguide structure, to reduce losses, and to devel-
op a generic process which could also be applied to other
periodically poled materials such as periodically poled LiTaO3

(PPLT), where the waveguide fabrication using chemical processing
proved to be difficult [101]. PPKTP waveguide technology has also
shown good progress [102,103] making them a choice media for
generation of blue-green coherent light due to high resistance of
KTP to photorefractive damage. In the longer wavelength region,
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a constant progress is being demonstrated in development of peri-
odically structured semiconductor waveguides, where the normal-
ized frequency doubling efficiencies of 21%W�1 at the fundamental
wavelength of 4 lm and 23%W�1 at the optical telecommunica-
tions wavelength of 1.55 lm have been demonstrated in GaAs
and AlGaAs, respectively [104,105].

Structured bulk nonlinear crystals, with all the flexibility affor-
ded by QPM and high-power handling capability, are of great inter-
est, indeed. In order to increase the range of applications for the
QPM bulk crystals a substantial research effort is devoted towards
reducing technological and material challenges. Eventually, the de-
sired outcome is the structuring technology and the material
which would allow for large optical apertures and quasi-phase
matched TWM within entire transparency range which, in turn,
should be as broad as possible. There are several substantial chal-
lenges on this road: (a) the material resistance to the induced opti-
cal absorption and photorefraction, which can be prominent in
ferroelectrics, should be increased (b) a structuring technology
which would faithfully reproduce the desired design pattern onto
the v(2) structure, should be further refined, (c) the homogeneity
of the initial crystal wafers which are the main determinants of
the structuring success, should be increased (d) the structuring
techniques should be developed for fabrication of sub-micron peri-
odicity structures over large crystal thickness, or, in other words,
the aspect ratio of the inverted domains should be increased. Some
of these challenges (a, c and partly d) primarily require additional
research efforts in material chemistry and material growth, the
other challenges require improved methods for domain control
and a better understanding of the domain inversion kinetics.

Periodic electric field poling of the bulk congruent LiNbO3 (CLN)
was reported in 1994 [106]. CLN growth at that time had been well
developed so the research could focus primarily on the structuring
techniques. Already in 1995 a CW laser pumped bulk PPLN OPO
was demonstrated [107]. The thickness of the structures were lim-
ited to 0.5 mm due to a large coercive field in CLN (�21 kV/mm),
which is the field required for the spontaneous polarization
switching. A better understanding of the ferroelectric domain
kinetics during polarization inversion was required to achieve
periodicities below 20 lm in 0.5 mm-thick PPLN. Miller and
coworkers in Ref. [108] demonstrated a substantial improvement
in poling PPLN structures with sub-10 lm periodicities. A backs-
witching method was investigated in CLN in order to reduce the
QPM periodicity even further [109]. However, so far it proved to
be difficult to achieve adequate control over the ferroelectric
domain kinetics in this process.

Approximately at the same time as in CLN, the electric field-pol-
ing of the bulk hydrothermally-grown KTP was demonstrated, pro-
ducing QPM structures for green light generation [110]. The
coercive field in KTP is an order of magnitude lower than in CLN
so it is substantially simpler to fabricate QPM structures thicker
than 0.5 mm. These initial demonstrations used hydrothermally-
grown KTP wafers. Hydrothermal growth produced good quality
homogeneous KTP crystals, but the crystal sizes were rather lim-
ited. Moreover, this growth process is very slow and has to proceed
at high pressures, so, eventually, the commercial crystals were pre-
dominantly grown by a flux method. The flux-grown KTP however
has high ionic conductivity due to a hopping motion of weakly
bound K+ ions and K+ vacancies. To complicate matters further,
the homogeneity of the crystal wafers depends critically on the
growth conditions and can vary substantially. Nevertheless, the
periodic poling techniques were developed for this material,
including a Rb-exchange-assisted electric field poling [111] and a
low-temperature poling [112], with both methods aiming to re-
duce the ionic conductivity of the commercial KTP wafers. PPKTP
and its periodically poled isomorphs RbTiOAsO4 (RTA) [113], RbTi-
OPO4 (RTP) [114], KTiOAsO4 (KTA) [115] attracted considerable
attention also due to the fact that these materials did not suffer
from photorefraction, as opposed to CLN, although the nonlinear
coefficient, d33 = 15.4 pm/V, in KTP [37] is almost 1.8-times lower
than in CLN. As an additional advantage, KTP has a larger crystal
anisotropy as compared to CLN which somewhat reduces the ferro-
electric domain broadening during periodic poling, permitting
rather easier scaling down of the periodicity in QPM structures to
below 3 lm [116], as well as producing homogeneous QPM struc-
tures in 3 mm-thick wafers [117]. For the fabrication of sub-
micrometer-periodicity structures the poling technique in KTP



Fig. 12. AFM images showing the etched domain structure on the patterned polar surface (a), and on the backside (b). The scale bar is 2 lm.
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had to be modified to further reduce the influence of fringing elec-
tric fields at the finger electrode edges. For this end, a periodic K+-
ion indiffusion from a KNO3 melt at one of the polar surfaces
proved to be very helpful [73]. Fig. 12 shows the atomic force
microscope images of the periodic domain pattern with a period
of 720 nm fabricated in a 1 mm-thick wafers using this technique.
The aspect ratio of the domains in this structure is then 2778.

Regardless of the fast progress in structuring of the most prom-
ising QPM materials, CLN and KTP, it was evident that these crys-
tals should be improved in order to reduce the effects of
photorefraction and blue- and green-light induced infrared absorp-
tion (BLIIRA, GRIIRA) [118,119]. Previous research, which focused
on CLN as a potential material for photorefractive components, re-
vealed that doping with about 5% MgO substantially reduces pho-
torefraction in this crystal [120]. MgO:LiNbO3 was successfully
poled and it was also shown that the coercive field in this material
is reduced down to about 4.5 kV/cm [121]. This fact allowed fabri-
cation of MgO:PPLN structures having thickness of 5 mm and
therefore allowing handling of substantial optical powers [122].
A threshold in MgO doping concentration for reduction of the pho-
torefraction as well as reduction of GRIIRA was indeed confirmed
and attributed to the reduction of native defects, Nb in Li, when
Mg is incorporated on Li sites [123]. Further reduction of the coer-
cive field in LiNbO3 and LiTaO3 was achieved by increasing [Li] con-
centration in the crystals to the extent of making them close to
stoichiometric. Two methods were demonstrated to achieve this
goal successfully, a double crucible Czochralsky growth [124] and
a Li vapor-phase equilibration [125]. The former method might
be more suitable for production of large crystal sizes and was sub-
sequently commercialized. The, so called, near stoichiometric LiN-
bO3 (SLN) and, especially, near stoichiometric LiTaO3 (SLT),
additionally doped with MgO in order to reduce photorefraction,
became new materials for QPM structure fabrication using electric
field poling and capable of handling substantial powers in the vis-
ible spectral range. Comparison of high-peak power BLIIRA in some
of these and other candidate materials can be found in Ref. [126].
Recently, a successful periodic poling of 5-mm thick congruent Li-
TaO3 heavily (7 at.%) doped with MgO has been achieved at ele-
vated temperatures, making this material an interesting
candidate for high power applications [127].

Material research efforts were required to improve performance
of PPKTP as well. This material is susceptible to color center forma-
tion and a concomitant induced absorption when irradiated with
high-peak power blue or green laser beams [119,126]. This is
attributed to a number of possible electron and hole capture cen-
ters, and there were indications that K+ vacancies, which are abun-
dant in the flux grown crystals, could act as stabilizing defects.
Previous material research in mixed RbxK1�xTiOPO4 crystals
showed that for x � 0.01–0.02 the ionic conductivity mediated by
K+ vacancies is reduced by orders of magnitude and the material
still retains similar ferroelectric properties as KTP [128–130]. Fab-
rication of the QPM structures indeed revealed superior properties
of this solid solution crystal in terms of ferroelectric domain con-
trol as well as in terms of optical performance. High-peak power
experiments revealed that the induced absorption which is present
in all nonlinear crystals is drastically reduced and the absorption
level does not increase in time during long term exposure
[131,132]. A drastically reduced ionic conductivity in this crystal
allowed fabrication of 5-mm-thick periodically poled crystals for
high energy frequency conversion [133]. Another approach for
increasing the aperture of the PPKTP is by template growth where
the seed crystal already contains electric field-poled structure.
Such template growth has been recently accomplished by employ-
ing a special composition of the flux, which permitted crystal
growth substantially below Curie temperature [134].

A large progress over the last decade occurred in periodic struc-
tures fabricated in GaAs. Improving on earlier technique of stacking
and bonding of GaAs plates having opposite orientations of the v(2)

sign [89], two slightly different methods were developed, where an
epitaxial growth over orientationally patterned GaAs (OP-GaAs)
template was exploited [135,136]. The key to both methods was
the availability of a fast epitaxial regrowth using hydride vapor
phase epitaxy (HVPE) over GaAs template representing periodically
inverted GaAs structure. This template can be produced either by
molecular beam epitaxy growth of a thin Ge layer followed by an in-
verted layer of GaAs. Subsequent steps of lithography and chemical
etching enable a very precise control over the periodicity and the
duty cycle. Alternatively, the template can be produced by bonding
of two GaAs plates with opposite orientations and subsequent steps
of mechanical polishing, lithography and etching. Both methods
produce very high quality structures and the HVPE GaAs layer shows
very low absorption losses in the near infrared, lower, in fact, than
that in the original GaAs substrate. OP-GaAs bulk structures with
thickness exceeding 0.5 mm can be produced by these methods.

At the end of this brief overview of the progress in QPM mate-
rials we need to mention other crystals and non-crystalline media
where engineering of the nonlinear interactions have been demon-
strated but where the further progress will depend on advances in
material research solving specific problems, and, mostly, on an
application niche which is important enough to warrant required
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investment in such an effort. BaTiO3, a well-known photorefractive
crystal was one of the first materials to be poled [92], but it took
40 years before OPO was demonstrated in periodically poled struc-
ture [137]. Another photorefractive crystal, Sr0.6Ba0.4Nb2O6 (SBN),
was used to demonstrate quasi-phase matched SHG [138,139].
Great hopes for blue light generation were attributed to a period-
ically poled KNbO3, a crystal with a complicated ferroelectric do-
main structure and a very interesting object from material
research point of view, which, so far, proved to be too prone to self
re-structuring during nonlinear interaction [140–142]. Thermally-
assisted electric field poling of glass for a long time was and still
remains a huge promise, having in mind applications in optical
telecommunications and integrated optics [143]. There are also
choices of QPM media in ultraviolet applications such as periodi-
cally poled MgBaF4 [144] and crystalline quartz, which has been
structured by applying mechanical stress [145], as well as orienta-
tionally patterned GaN [146]. In particular, the elastic-twin pat-
terned crystalline quartz has a great promise for high-power UV
generation due to a large bandgap of around 9 eV and the availabil-
ity of high-quality and large-size crystals. The first UV generation
by frequency doubling in the structured quartz [147] indeed shows
a potential of the twin-patterning technology in this material. Dee-
per into XUV the QPM principles can be applied as well as was bril-
liantly demonstrated in high-harmonic generation in gas-filled
corrugated capillaries [148,149].
4. Conclusions

By studying the dynamic historical development in the laser
technology arena one cannot avoid noticing a gradual paradigm shift
occurring after the introduction of the double-heterojunction laser
diodes 40 years ago. Versatility afforded by the structure design, rel-
atively easily exploitable advantages of semiconductor bandgap
engineering as well as amenability to mass production gradually
formed a thinking which can be summarized as follows: ‘‘if the job
can be done using laser diodes – use laser diodes’’. It might be too
bold to claim at this moment in time that a similar paradigm shift
will happen in the field of nonlinear optical materials, however the
huge progress since the introduction of the electric field poling in
1983 as a means for structuring nonlinearity keep us hopeful that
this just might happen in the future. Before it happens, though, a
great deal of dedicated effort must be applied in further improve-
ment of suitable nonlinear materials and structuring techniques.
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